gtime.model_selection
.horizon_shift¶
-
gtime.model_selection.
horizon_shift
(time_series:pandas.core.frame.DataFrame, horizon:int=5) → pandas.core.frame.DataFrame¶ Perform a shift of the original
time_series
for each time step between 1 andhorizon
.- Parameters
- time_seriespd.DataFrame, shape (n_samples, n_features), required
The list of
TimeSeriesFeature
from which to compute the feature_extraction.- horizonint, optional, default:
5
It represents how much into the future is necessary to predict. This corresponds to the number of shifts that are going to be performed on y.
- Returns
- ypd.DataFrame, shape (n_samples, horizon)
The shifted time series.
Examples
>>> import pandas as pd >>> from gtime.model_selection import horizon_shift >>> X = pd.DataFrame(range(0, 5), index=pd.date_range("2020-01-01", "2020-01-05")) >>> horizon_shift(X, horizon=2) y_1 y_2 2020-01-01 1.0 2.0 2020-01-02 2.0 3.0 2020-01-03 3.0 4.0 2020-01-04 4.0 NaN 2020-01-05 NaN NaN