gtime.forecasting
.TrendForecaster¶
-
class
gtime.forecasting.
TrendForecaster
(trend: str, trend_x0: numpy.array, loss: Callable = <function mean_squared_error>, method: str = 'BFGS')¶ Trend forecasting model.
This estimator optimizes a trend function on train data and will forecast using this trend function with optimized parameters.
- Parameters
- trend
"polynomial"
|"exponential"
, required The kind of trend removal to apply.
- trend_x0np.array, required
Initialisation parameters passed to the trend function
- lossCallable, optional, default:
mean_squared_error
Loss function to minimize.
- methodstr, optional, default:
"BFGS"
Loss function optimisation method
- trend
Examples
>>> import pandas as pd >>> import numpy as np >>> from gtime.model_selection import horizon_shift, FeatureSplitter >>> from gtime.forecasting import TrendForecaster >>> >>> X = pd.DataFrame(np.random.random((10, 1)), index=pd.date_range("2020-01-01", "2020-01-10")) >>> y = horizon_shift(X, horizon=2) >>> X_train, y_train, X_test, y_test = FeatureSplitter().transform(X, y) >>> >>> tf = TrendForecaster(trend='polynomial', trend_x0=np.zeros(2)) >>> tf.fit(X_train).predict(X_test) array([[0.39703029], [0.41734957]])
Methods
fit
(self, X[, y])Fit the estimator.
get_params
(self[, deep])Get parameters for this estimator.
predict
(self, X)Using the fitted polynomial, predict the values starting from
X
.score
(self, X, y[, sample_weight])Return the coefficient of determination R^2 of the prediction.
set_params
(self, \*\*params)Set the parameters of this estimator.
-
__init__
(self, trend:str, trend_x0:<built-in function array>, loss:Callable=<function mean_squared_error at 0x12814f620>, method:str='BFGS')¶ Initialize self. See help(type(self)) for accurate signature.
-
fit
(self, X:pandas.core.frame.DataFrame, y=None) → 'TrendForecaster'¶ Fit the estimator.
- Parameters
- Xpd.DataFrame, shape (n_samples, n_features), required
Input data.
- yNone
There is no need of a target in a transformer, yet the pipeline API requires this parameter.
- Returns
- selfobject
Returns self.
-
get_params
(self, deep=True)¶ Get parameters for this estimator.
- Parameters
- deepbool, default=True
If True, will return the parameters for this estimator and contained subobjects that are estimators.
- Returns
- paramsmapping of string to any
Parameter names mapped to their values.
-
predict
(self, X:pandas.core.frame.DataFrame) → pandas.core.frame.DataFrame¶ Using the fitted polynomial, predict the values starting from
X
.- Parameters
- X: pd.DataFrame, shape (n_samples, 1), required
The time series on which to predict.
- Returns
- predictionspd.DataFrame, shape (n_samples, 1)
The output predictions.
- Raises
- NotFittedError
Raised if the model is not fitted yet.
-
score
(self, X, y, sample_weight=None)¶ Return the coefficient of determination R^2 of the prediction.
The coefficient R^2 is defined as (1 - u/v), where u is the residual sum of squares ((y_true - y_pred) ** 2).sum() and v is the total sum of squares ((y_true - y_true.mean()) ** 2).sum(). The best possible score is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always predicts the expected value of y, disregarding the input features, would get a R^2 score of 0.0.
- Parameters
- Xarray-like of shape (n_samples, n_features)
Test samples. For some estimators this may be a precomputed kernel matrix or a list of generic objects instead, shape = (n_samples, n_samples_fitted), where n_samples_fitted is the number of samples used in the fitting for the estimator.
- yarray-like of shape (n_samples,) or (n_samples, n_outputs)
True values for X.
- sample_weightarray-like of shape (n_samples,), default=None
Sample weights.
- Returns
- scorefloat
R^2 of self.predict(X) wrt. y.
Notes
The R2 score used when calling
score
on a regressor will usemultioutput='uniform_average'
from version 0.23 to keep consistent withr2_score
. This will influence thescore
method of all the multioutput regressors (except forMultiOutputRegressor
). To specify the default value manually and avoid the warning, please either callr2_score
directly or make a custom scorer withmake_scorer
(the built-in scorer'r2'
usesmultioutput='uniform_average'
).
-
set_params
(self, **params)¶ Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects (such as pipelines). The latter have parameters of the form
<component>__<parameter>
so that it’s possible to update each component of a nested object.- Parameters
- **paramsdict
Estimator parameters.
- Returns
- selfobject
Estimator instance.