gtime.feature_generation
.Constant¶
-
class
gtime.feature_generation.
Constant
(constant: int = 0, length: int = None)¶ Generate a
pd.DataFrame
with one column, of the same length as the inputX
and containing the valueconstant
across the whole column.- Parameters
- constantint, optional, default:
2
The value to use to generate the constant column of the
pd.DataFrame
.- lengthint, optional, default:
50
The length of the DataFrame to generate. This is used only if X is not passed in the
transform
method, otherwise the length is inferred from it.
- constantint, optional, default:
Examples
>>> import pandas as pd >>> from gtime.feature_generation import Constant >>> X = pd.DataFrame(range(0, 5), index=pd.date_range(start='2019-04-18', end='2019-04-22', freq='d')) >>> constant = Constant(constant=3) >>> constant.fit_transform(X) 0__Constant 2019-04-18 3.0 2019-04-19 3.0 2019-04-20 3.0 2019-04-21 3.0 2019-04-22 3.0
Methods
fit
(self, X[, y])Fit the estimator.
fit_transform
(self, X[, y])Fit to data, then transform it.
get_feature_names
(self)Return feature names for output features.
get_params
(self[, deep])Get parameters for this estimator.
set_params
(self, \*\*params)Set the parameters of this estimator.
transform
(self, time_series, NoneType]=None)Generate a
pd.DataFrame
with one column with the same length astime_series
and with the same index, containing a value equal toconstant
.-
__init__
(self, constant:int=0, length:int=None)¶ Initialize self. See help(type(self)) for accurate signature.
-
fit
(self, X:pandas.core.frame.DataFrame, y=None) → 'Constant'¶ Fit the estimator.
- Parameters
- Xpd.DataFrame, shape (n_samples, n_features)
Input data.
- yNone
There is no need of a target in a transformer, yet the pipeline API requires this parameter.
- Returns
- selfConstant
Returns self.
-
fit_transform
(self, X, y=None, **fit_params)¶ Fit to data, then transform it.
Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.
- Parameters
- Xnumpy array of shape [n_samples, n_features]
Training set.
- ynumpy array of shape [n_samples]
Target values.
- **fit_paramsdict
Additional fit parameters.
- Returns
- X_newnumpy array of shape [n_samples, n_features_new]
Transformed array.
-
get_feature_names
(self)¶ Return feature names for output features.
- Returns
- output_feature_namesndarray, shape (n_output_features,)
Array of feature names.
-
get_params
(self, deep=True)¶ Get parameters for this estimator.
- Parameters
- deepbool, default=True
If True, will return the parameters for this estimator and contained subobjects that are estimators.
- Returns
- paramsmapping of string to any
Parameter names mapped to their values.
-
set_params
(self, **params)¶ Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects (such as pipelines). The latter have parameters of the form
<component>__<parameter>
so that it’s possible to update each component of a nested object.- Parameters
- **paramsdict
Estimator parameters.
- Returns
- selfobject
Estimator instance.
-
transform
(self, time_series:Union[pandas.core.frame.DataFrame, NoneType]=None) → pandas.core.frame.DataFrame¶ Generate a
pd.DataFrame
with one column with the same length astime_series
and with the same index, containing a value equal toconstant
.- Parameters
- time_seriespd.DataFrame, shape (n_samples, 1), optional, default:
None
The input DataFrame. If passed, the output DataFrame is going to have the same index as
time_series
.
- time_seriespd.DataFrame, shape (n_samples, 1), optional, default:
- Returns
- constant_series_renamedpd.DataFrame, shape (length, 1)
A constant series, with the same length of
X
and with the same index.