gtime.feature_extraction
.Polynomial¶
-
class
gtime.feature_extraction.
Polynomial
(degree: int = 2)¶ Compute the polynomial feature_extraction, of a degree equal to the input
degree
. Wrapper ofsklearn.preprocessing.PolynomialFeatures
but returns apd.DataFrame
.- Parameters
- degreeint, optional, default:
2
The degree of the polynomial feature_extraction.
- degreeint, optional, default:
- Attributes
- powers_
Examples
>>> import pandas as pd >>> from gtime.feature_extraction import Polynomial >>> ts = pd.DataFrame([0, 1, 2, 3, 4, 5]) >>> pol = Polynomial(degree=3) >>> pol.fit_transform(ts) 0__Polynomial 1__Polynomial 2__Polynomial 3__Polynomial 0 1.0 0.0 0.0 0.0 1 1.0 1.0 1.0 1.0 2 1.0 2.0 4.0 8.0 3 1.0 3.0 9.0 27.0 4 1.0 4.0 16.0 64.0 5 1.0 5.0 25.0 125.0
Methods
fit
(self, time_series[, y])Fit the estimator.
fit_transform
(self, X[, y])Fit to data, then transform it.
get_feature_names
(self[, input_features])Return feature names for output features
get_params
(self[, deep])Get parameters for this estimator.
set_params
(self, \*\*params)Set the parameters of this estimator.
transform
(self, time_series)Compute the polynomial feature_extraction of
time_series
, up to a degree equal todegree
.-
__init__
(self, degree:int=2)¶ Initialize self. See help(type(self)) for accurate signature.
-
fit
(self, time_series:pandas.core.frame.DataFrame, y=None)¶ Fit the estimator.
- Parameters
- time_seriespd.DataFrame, shape (n_samples, n_features)
Input data.
- yNone
There is no need of a target in a transformer, yet the pipeline API requires this parameter.
- Returns
- selfobject
Returns self.
-
fit_transform
(self, X, y=None, **fit_params)¶ Fit to data, then transform it.
Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.
- Parameters
- Xnumpy array of shape [n_samples, n_features]
Training set.
- ynumpy array of shape [n_samples]
Target values.
- **fit_paramsdict
Additional fit parameters.
- Returns
- X_newnumpy array of shape [n_samples, n_features_new]
Transformed array.
-
get_feature_names
(self, input_features=None)¶ Return feature names for output features
- Parameters
- input_featureslist of string, length n_features, optional
String names for input features if available. By default, “x0”, “x1”, … “xn_features” is used.
- Returns
- output_feature_nameslist of string, length n_output_features
-
get_params
(self, deep=True)¶ Get parameters for this estimator.
- Parameters
- deepbool, default=True
If True, will return the parameters for this estimator and contained subobjects that are estimators.
- Returns
- paramsmapping of string to any
Parameter names mapped to their values.
-
set_params
(self, **params)¶ Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects (such as pipelines). The latter have parameters of the form
<component>__<parameter>
so that it’s possible to update each component of a nested object.- Parameters
- **paramsdict
Estimator parameters.
- Returns
- selfobject
Estimator instance.
-
transform
(self, time_series:pandas.core.frame.DataFrame) → pandas.core.frame.DataFrame¶ Compute the polynomial feature_extraction of
time_series
, up to a degree equal todegree
.- Parameters
- time_seriespd.DataFrame, shape (n_samples, 1), required
The input DataFrame. Used only for its index.
- Returns
- time_series_tpd.DataFrame, shape (n_samples, 1)
The computed polynomial feature_extraction.